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Abstract: Skin cancer is one of the most common types of 
cancer, and its early detection can be life-saving. In this 
project, we built a system that uses deep learning to 
classify skin lesions as either benign or malignant. We 
applied three well-known models- InceptionV3, Xception, 
and EfficientNet to achieve this. While these models are 
highly accurate, they often operate as "black boxes," 
making it hard for doctors to understand how they reach 
their decisions. To solve this, we integrated explainability 
techniques like Grad-CAM and SmoothGrad, which 
visually show which areas of the image influenced the 
model’s decision. This not only improves trust in the 
system but also makes it easier for healthcare 
professionals to verify its results. Our experiments 
showed that Xception performed best in terms of both 
accuracy and explanation quality. This work brings us 
closer to making AI-driven tools more trustworthy and 
transparent in real-world medical applications.  
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1. INTRODUCTION 
 
Skin cancer is one of the most common cancers globally, 
affecting millions of people every year. The early detection 
of skin cancer, particularly in its malignant forms, is 
essential as it can significantly improve treatment 
outcomes and save lives. Traditional diagnostic 
approaches involve visual examination and, if necessary, 
biopsy by dermatologists. However, even for experienced 
practitioners, distinguishing between benign and 
malignant lesions based solely on appearance can be 
challenging, leading to potential diagnostic errors. In 
recent years, artificial intelligence (AI) has emerged as a 
powerful tool to assist medical professionals by offering 
accurate and rapid diagnostics. This project leverages AI 
and, more specifically, deep learning, to classify skin 
lesions, enhancing the efficiency and accuracy of skin 
cancer diagnosis. 
 

1.1 Problem Statement: The Need for 
Explainable AI 

 
While deep learning models have demonstrated 
remarkable accuracy in image classification tasks, a 
significant challenge in using these models for clinical 
applications is their "black box" nature. Deep learning 
algorithms are often highly complex, relying on numerous 
layers and vast amounts of data to make predictions. As a 
result, they can make decisions without providing 
explanations, leaving healthcare professionals uncertain 
about the reasoning behind specific diagnoses. This lack 
of transparency poses a barrier to their adoption in the 
medical field, where trust, understanding, and 
interpretability are crucial for successful implementation. 
Therefore, this project aims to address this gap by 
incorporating explainability techniques, known as 
Explainable AI (XAI), to make the models' decision-
making process more transparent and accessible to 
healthcare professionals. 
 

1.2 Objectives 
 
The primary objective of this project is to develop an AI-
based system capable of accurately classifying skin 
lesions as either benign or malignant, making it a useful 
tool in clinical settings. To achieve this, the system 
integrates three widely recognized deep learning models: 
InceptionV3, Xception, and EfficientNet. Additionally, to 
enhance interpretability, we apply explainable AI 
techniques such as Grad-CAM and SmoothGrad. These 
techniques aim to provide visual explanations that 
highlight the areas in skin lesion images which influenced 
the models' predictions. By improving both accuracy and 
interpretability, this project seeks to bridge the gap 
between technical performance and clinical usability, 
ultimately contributing to safer and more trustworthy AI-
driven diagnostics. 

 
1.3 Scope of the project 
 
The scope of this project includes the training, testing, and 
evaluation of the InceptionV3, Xception, and EfficientNet 
models on a labeled dataset of skin lesions. In addition to  
 
model accuracy, we assess the explainability of each 
model's predictions using Grad CAM and SmoothGrad 
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visualizations. Our analysis includes a detailed 
comparison of the models in terms of both performance 
metrics (such as precision, recall, and F1-score) and the 
quality of their explanations. By providing both 
quantitative and qualitative insights, this project lays the 
groundwork for future improvements in AI-based 
dermatological diagnostics, with the potential for real-
world applications in clinical settings. 

 
 
2.  MODELS AND METHODOLOGY 
 

Deep Learning Models 
 In this project, we used three state-of-the-art deep 
learning models: InceptionV3, Xception, and EfficientNet. 
These models are well-regarded for their performance in 
image classification tasks and have been adapted to 
classify skin lesions as benign or malignant. 
 

2.1 InceptionV3 
 
2.1.1 Architecture: InceptionV3 utilizes a combination of 
various kernel sizes in its convolutional layers, allowing it 
to capture features at multiple scales. It includes Inception 
modules, which are sub-networks that process images in 
parallel using different convolutional filters (e.g., 1x1, 3x3, 
and 5x5).  
2.2.2 Advantages: High accuracy in image classification. 
Capable of handling images with diverse features and 
scales due to its multi-path approach. 
 2.2.3 Disadvantages: Computationally expensive and 
requires a significant amount of memory. Complex 
architecture makes it harder to interpret. 
 2.2.4 Applications: Suitable for general-purpose image 
classification tasks where a balanced performance is 
required. 
 

2.2 Xception 
 

2.2.1 Architecture: Xception, short for "Extreme 
Inception," replaces traditional convolution layers with 
depthwise separable convolutions, which separates the 
spatial convolution and channel-wise convolution. It uses 
residual connections to maintain gradient flow. 
 2.2.2 Advantages: More efficient than traditional 
convolutional networks due to its lightweight 
architecture. Good at capturing complex features from 
images.  
2.2.3 Disadvantages: 4 Requires powerful hardware for 
training, especially for large datasets. May be prone to 
overfitting if not properly regularized.  
2.2.4 Applications: Ideal for tasks that need a model 
capable of detailed feature extraction, such as medical 
image analysis. 
 

2.3 EfficientNet 
 

2.3.1 Architecture: EfficientNet uses a novel scaling 
method called compound scaling, which uniformly scales 
the model depth, width, and resolution based on a fixed 
set of parameters. It is optimized for both accuracy and 
efficiency.  
2.3.2 Advantages: Highly efficient, with fewer 
parameters compared to other deep learning models. 
Scalable for different input sizes, making it versatile for 
various applications.  
2.3.3 Disadvantages: Can be sensitive to input 
resolution; performance may drop if not properly scaled. 
Might not perform as well on datasets with high 
complexity without sufficient input resolution.  
2.3.4 Applications: EfficientNet is useful for resource-
constrained environments where computational 
efficiency is a priority.  
 

Explainable AI (XAI) Techniques  
To address the "black-box" nature of deep learning 
models and make their predictions more 
interpretable, we incorporated two popular XAI 
techniques: Grad-CAM and SmoothGrad.. 
 

2.4 Gradient-weighted Class Activation Mapping 
(Grad-CAM) 
 
 2.4.1 How it works: Grad-CAM generates heatmaps that 
highlight the areas of an input image that the model 
focuses on when making a prediction. It calculates 
gradients of the target class score concerning the feature 
maps of a convolutional layer.   
2.4.2 Advantages: Provides visual insights into the 
model’s decision-making process. Helps in identifying 
regions of interest that contributed  most to the 
prediction.   
2.4.3 Disadvantages: The generated heatmaps can be 
coarse and might not focus on fine details.Limited to 
convolutional neural networks and might not generalize 
to non-CNN models.  
2.4.4 Applications: Useful in medical imaging to show 
clinicians which parts of an image influenced a model's 
diagnosis, enhancing trust and understanding. 
 

2.5 SmoothGrad  
 
2.5.1 How it works: SmoothGrad improves the quality of 
gradient-based explanations by adding noise to the input 
image multiple times and averaging the resulting gradient 
maps. This reduces the noise and provides clearer 
visualizations of the areas that influenced the prediction.  
2.5.2 Advantages: Produces sharper and more focused 
explanations by averaging gradients across noisy 
variations of the input. Reduces sensitivity to noise, 
making explanations more stable.  
 
2.5.3 Disadvantages: Requires generating multiple noisy 
samples, increasing computation time. May still struggle 
with subtle variations in complex datasets.  
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2.5.4 Applications: Helps in refining visual explanations, 
making it easier for clinicians to interpret subtle features 
that may indicate malignancy.  
 

2.6 Summary  
 
2.6.1 InceptionV3 provides a balanced performance and 
is useful for tasks requiring reliable, general-purpose 
classification.  
2.6.2 Xception excels in capturing complex features with 
its depthwise separable convolutions, making it effective 
in handling detailed image analysis tasks.  
2.6.3 EfficientNet is highly efficient and performs well 
across different input sizes, suitable for scenarios with 
limited computational resources.  
2.6.4 Grad-CAM offers region-based explanations, 
making it easy for clinicians to understand which areas of 
the image the model focused on.  
2.6.5 SmoothGrad provides finer, pixel-level 
explanations, useful for highlighting subtle but critical 
features in the image. By combining high-performing deep 
learning models with XAI techniques, our project aims to 
deliver an accurate and interpretable diagnostic tool for 
skin cancer detection, enhancing the trustworthiness and 
clinical usability of AI systems in healthcare. 
 

2.7 Methodology 
 
2.7.1 Data Collection & Preprocessing  

 
2.7.1.1 Algorithm: Use OpenCV for loading and resizing 
images. Convert images to NumPy arrays for  processing.  
2.7.1.2 Steps: Resize images to match the input sizes 
required by each model (128x128, 224x224, 299x299). 
Apply augmentation techniques to enhance training data. 
 
2.7.2 Deep Learning Model Development  
 
2.7.2.1 Algorithm: Develop and utilize EfficientNet, 
InceptionV3, and Xception architectures.  
2.7.2.2 Steps: 
EfficientNet: Optimized for smaller input sizes, balancing 
speed and accuracy.  
InceptionV3: Suitable for handling larger input sizes, 
enabling detailed feature extraction.  
Xception: Uses depthwise separable convolutions for 
improved performance with complex patterns.  
 
2.7.3 Model Training & Testing  
 
2.7.3.1 Algorithm: Adam optimizer with cross-entropy 
loss.  
 
 
2.7.3.2 Steps: Split data into training and validation sets. 
Monitor accuracy, precision, recall, and F1-score during 
training. Apply early stopping or learning rate scheduling 
for optimization.  

 
2.7.4 Prediction & Classification  
 
2.7.4.1Steps: Use trained models to predict if the lesion is 
malignant or benign. Output the classification results.  
 
2.7.5 Explainability using Grad-CAM and SmoothGrad  
 
2.7.5.1 Algorithm: Generate visual explanations using 
Grad-CAM and SmoothGrad techniques.  
2,7.5.2 Steps: 42 Grad-CAM: Produces heatmaps 
highlighting important regions in the images, showing 
where the model focuses.  
SmoothGrad: Enhances Grad-CAM outputs by reducing 
noise, making the heatmaps clearer and more 
interpretable for clinicians.  
 
2.7.6 Evaluation & Performance Metrics  
 
2.7.6.1 Accuracy: Measures the proportion of correct 
predictions.  
2.7.6.2 Precision & Recall: Evaluates the model’s focus 
on malignant cases.  
2.7.6.3 F1-score: Balances precision and recall for an 
overall effectiveness score.  
2.7.6.4 Explainability Evaluation: Quality and clarity of 
Grad-CAM and SmoothGrad outputs assessed for clinical 
usefulness. 
 

3. FINDINGS AND INTERPREATATION 
 
3.1 Xception Model  
 
3.1.1 Strengths: The Xception model demonstrates a 
well-balanced performance for classifying both benign 
and malignant skin lesions. It achieves high precision—
0.87 for benign and 0.90 for malignant classifications—
indicating that a large proportion of its positive 
predictions (either benign or malignant) are correct. 
Furthermore, its recall for benign lesions is 0.92, meaning 
it successfully identifies 92% of true benign cases, while 
for malignant lesions, recall is 0.84, capturing a 
substantial proportion of true malignant cases. These 
results yield high F1-scores of 0.89 for benign and 0.87 for 
malignant, leading to an overall accuracy of 0.88. This high 
accuracy makes the Xception model a strong candidate for 
clinical applications, as it maintains a robust balance 
across both sensitivity and specificity, minimizing the risk 
of false positives and false negatives.  
 
3.1.2 Weaknesses: While Xception is overall well-
balanced, it is computationally more intensive than some  
 
of the other models, which may limit its deployment in 
resource constrained settings, such as mobile or remote 
diagnostic systems.  
 
3.1.3 Reasoning: Xception's balanced performance is 
largely attributed to its unique architecture, which uses 



                

© 2025, IRJEdT  Volume: 07 Issue: 03 | Mar-2025                                                                                                 page. 2219 

depthwise separable convolutions instead of traditional 
convolutions. This approach allows the model to capture 
complex, high-level features more efficiently without a 
significant increase in computational cost. Depthwise 
separable convolutions separate spatial filtering from 
feature combination, enabling the model to analyze 
intricate patterns within the skin lesion images. This 
architectural advantage likely contributes to its effective 
handling of both benign and malignant cases, as it can 
capture detailed variations in lesion texture, shape, and 
color. Consequently, the Xception model offers high 
accuracy and generalizability, making it an optimal choice 
for balanced diagnostic tasks in dermatology. 
 

 

Fig 3.1 Xception model confusion matrix 

 
3.2 EfficientNet (128x128 Input Size): 
 
3.2.1 Strengths: EfficientNet with a 128x128 input size 
shows strong precision in identifying benign lesions,  
 
achieving a precision score of 0.91. This indicates that 
when the model classifies a lesion as benign, it is accurate 
in 91% of cases, which is essential for reducing false 
positives in clinical settings. For malignant classifications, 
EfficientNet has a precision of 0.76 and a recall of 0.92, 
indicating that it is particularly adept at identifying true 
malignant cases, capturing 92% of actual malignant 
lesions. This high malignant recall is beneficial in a clinical 
setting, where missing a malignant case could lead to 
delayed treatment and worse patient outcomes. 
 
3.2.2 Weaknesses: The model’s recall for benign cases is 
somewhat lower at 0.75, indicating that it misses a 
quarter of true benign lesions, which may result in some 
benign cases being incorrectly flagged as potentially 
malignant. This trade-off could lead to unnecessary 
follow-ups or additional testing, placing a burden on both 
patients and healthcare systems. The low benign recall 
implies a risk of over-diagnosing benign cases, potentially 
causing anxiety for patients who are falsely classified as at 
risk. 
 

3.2.3 Reasoning: EfficientNet achieves a balance 
between model depth, width, and resolution using a 
technique known as compound scaling, which optimizes 
performance without significantly increasing 
computational demands. However, with a smaller input 
size of 128x128, some fine-grained details in skin lesions 
may be lost, impacting the model’s ability to capture 
subtle features in benign cases. The model’s architecture 
is effective at recognizing malignant patterns, likely 
because malignant lesions often have distinct 
characteristics that are identifiable even in lower 
resolutions. Nevertheless, the lack of detailed input might 
explain its lower sensitivity for benign cases, as it may not 
pick up on the finer distinctions required to differentiate 
subtle benign features. Overall, EfficientNet at this input 
size performs well but has limitations in benign 
classification, making it more suitable for environments 
where malignant detection is prioritized. 

Fig 3.2 EfficientNet model confusion matrix 
 
 
3.3 EfficientNetB0 (224x224 Input Size):  
 
3.3.1 Strengths: When trained with an input size of 
224x224, EfficientNetB0 excels in detecting malignant 
lesions, achieving an impressive recall of 0.98. This means 
that almost all malignant cases are correctly identified by 
the model, making it a highly reliable option for 
applications where detecting malignant lesions is the top 
priority. Additionally, it achieves a high precision of 0.97 
for benign lesions, indicating that the model is effective in 
correctly identifying benign cases when it predicts them 
as such.  
 
3.3.2 Weaknesses: The primary limitation of 
EfficientNetB0 at this input size is its recall for benign 
lesions, which is relatively low at 0.62. This means that 
38% of benign cases are missed, leading to a considerable 
number of false positives. Such a shortcoming could 
contribute to patient anxiety, as benign lesions might be 
unnecessarily flagged as malignant, resulting in 
potentially avoidable biopsies or further investigations. 
This limitation may also impact resource allocation in 
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clinical settings, as additional follow ups for benign cases 
can strain healthcare systems.  
 
3.3.3 Reasoning: EfficientNetB0’s use of a larger input 
size (224x224) allows it to capture more detailed features 
in skin lesions, especially those indicative of malignancy, 
which explains its high malignant recall. The increase in 
input resolution enables the model to focus on subtle 
malignant characteristics, such as irregular borders, 
varied pigmentation, and asymmetry. However, this 
increased focus on malignant features may come at the 
cost of benign classification, as the model’s attention to 
malignant patterns can overshadow the subtler details 
associated with benign lesions. This trade-off highlights 
EfficientNetB0’s suitability for applications that prioritize 
malignant detection over benign accuracy, such as initial 
screenings where capturing all possible malignant cases 
is essential. 

Fig 3.3 EfficientNetB0 model confusion matrix 

 

3.4 InceptionV3: 
 
3.4.1 Strengths: InceptionV3 demonstrates a balanced 
performance across both benign and malignant 
classifications, with an overall accuracy of 0.82. The 
model achieves a precision of 0.86 and recall of 0.79 for 
benign lesions, while for malignant lesions, it scores 0.77 
for precision and 0.85 for recall. This balance ensures that 
InceptionV3 does not overemphasize either class, making 
it a dependable choice for general-purpose diagnostic 
tasks. By achieving relatively even scores in precision and 
recall for both classes, InceptionV3 offers a reliable model 
that can be deployed in situations requiring a balanced 
approach.  
 
3.4.2 Weaknesses: Despite its steady performance, 
InceptionV3 does not lead in any specific metric, which 
might make it less appealing for tasks that require 
specialization, such as maximizing malignant recall or 
benign precision. While the model provides consistent 
results, it may not be the top choice for applications where 
extremely high accuracy in one class is critical. 23  
 

3.4.3 Reasoning: The architecture of InceptionV3 is 
based on a multi-path approach, which processes images 
at multiple resolutions simultaneously. This design helps 
the model capture different spatial features and scale 
variations within images, allowing it to adapt to both 
benign and malignant cases. In dermatological contexts, 
where lesions can vary greatly in size and texture, this 
flexibility contributes to InceptionV3’s balanced 
performance. However, the multi-path structure also 
leads to an averaging effect, as it does not prioritize any 
specific feature set over others. This design choice might 
explain why InceptionV3 achieves steady performance 
without excelling in any particular metric. It is, therefore, 
best suited for diagnostic workflows where a balanced, 
all-purpose model is needed rather than one that 
specializes in a single type of classification. 
 

Fig 3.4 Inception model confusion matrix 

 

 

4.ANALYSIS AND UNDERSTANDING: 
 
4.1 Best Overall Model: Xception Model 
 
The Xception model emerged as the most balanced among 
the models tested in this project. With strong precision 
and recall for both benign and malignant classifications, it 
achieves an overall accuracy of 0.88, making it highly 
reliable for clinical use. Its performance indicates that it 
minimizes both false positives and false negatives, which 
is crucial in a medical setting where diagnostic accuracy 
directly impacts patient outcomes. Xception’s 
architecture, featuring depthwise separable convolutions, 
allows the model to capture complex features efficiently  
 
without overburdening computational resources, thus 
offering a practical balance between accuracy and 
efficiency.This balanced capability makes Xception 
particularly suitable for clinical applications where high 
sensitivity (recall) and high specificity (precision) are 
needed to avoid both missed diagnoses and unnecessary 
follow-ups. Given its high F1-scores across both benign 
and malignant classes, Xception can be trusted to deliver 
consistent performance, aiding dermatologists in reliably 
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identifying both non-cancerous and cancerous skin 
lesions. 
 
4.2 Best for Malignant Detection: EfficientNetB0  
 
EfficientNetB0, with an input size of 224x224, proved to 
be the most effective model for detecting malignant 
lesions, achieving an exceptionally high recall of 0.98. This 
high recall rate indicates that the model captures nearly 
all malignant cases, which is particularly valuable in 
cancer detection where missing a malignant case could 
have serious consequences. For clinical applications 
prioritizing malignant detection, EfficientNetB0 stands 
out as it can serve as a robust early screening tool, 
catching nearly every potential cancerous case.  However, 
its lower recall for benign lesions (0.62) means that some 
benign lesions might be misclassified as malignant, which 
could lead to over-diagnosis and unnecessary follow-ups. 
While this is a drawback, it can be acceptable in scenarios 
where the priority is to detect every possible malignant 
case, even at the cost of benign lesion misclassification. 
EfficientNetB0's ability to focus on malignant features is 
likely enhanced by its larger input size, allowing the 
model to detect minute patterns and irregularities 
associated with malignancy, such as asymmetric borders, 
uneven coloration, or rapid lesion growth.  
 
4.3 Best for Balanced Performance: InceptionV3 
 
The InceptionV3 model offers a balanced performance 
that does not excel in any single metric but achieves solid 
results across both benign and malignant classifications. 
With an overall accuracy of 0.82 and reasonably high 
precision and recall scores for both categories, 
InceptionV3 is suitable for general-purpose applications 
where a balanced diagnostic tool is required. Its ability to 
handle both benign and malignant cases without favoring 
one over the other makes it versatile for diverse clinical 
workflows. InceptionV3’s architecture uses a multi-path 
approach, which processes images at various spatial 
resolutions, allowing the model to capture features across 
different scales. This makes it adaptable to variations in 
lesion size, shape, and texture, contributing to its balanced 
performance. Although it doesn’t achieve the highest 
precision or recall for any single category, its consistent 
accuracy makes InceptionV3 a reliable model for clinical 
applications that require steady, all-around performance. 
 
 
4.4 Explainable AI (XAI) Techniques 
 
 In medical applications, especially in areas like skin 
cancer detection, it is crucial for AI models to provide not 
just accurate predictions but also explanations that can be 
understood by clinicians. Explainable AI (XAI) addresses 
the "black box" nature of deep learning models by 
highlighting how a model arrives at its decision. In this 
project, we used two widely recognized XAI techniques—
Grad-CAM and SmoothGrad—to improve the 

interpretability of the predictions made by InceptionV3, 
Xception, and EfficientNet models. 
 
4.4.1 Gradient-weighted Class Activation Mapping 
(Grad-CAM)  
 
Grad-CAM is an XAI technique that produces a coarse 
localization map of the important regions in an image by 
computing the gradient of the predicted class score with 
respect to the feature maps of the convolutional layers. It 
highlights the areas in the image that the model focused 
on to make its classification decision.  
How Grad-CAM Works: The Grad-CAM algorithm 
computes the gradients of the class score (e.g., benign or 
malignant) with respect to the feature maps of the last 
convolutional layer.  These gradients are then pooled and 
used to weight the importance of each feature map. 
Finally, a heatmap is generated, showing which parts of 
the input image were most relevant for the model’s 
decision. For each skin lesion image, Grad-CAM was 
applied to visualize which regions of the image 
contributed most to the classification as either benign or 
malignant. These heatmaps were overlaid on the original 
images to help dermatologists understand which areas 
the model considered important. 
 

 

Fig 4.4.1 GRAD-CAM Analysis 

 
Benefits: Grad-CAM provided insight into the model’s 
decision-making process, showing that certain areas of a 
lesion were consistently highlighted when classified as 
malignant. Clinicians can use these heatmaps as a second 
opinion, increasing their trust in the AI system. 
 
4.4.2 SmoothGrad  
 
SmoothGrad enhances the interpretation of deep learning 
models by visualizing the input features that contribute 
the most to the model’s predictions. It does this by 
generating noisy versions of the input image, running 
these through the model, and averaging the gradients to 
reduce noise and sharpen the explanations.  
How SmoothGrad Works:  SmoothGrad takes multiple 
noisy copies of the input image by adding random 
Gaussian noise. It computes the gradient of the class score 
with respect to the input image for each noisy copy.  The 
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gradients are averaged to produce a more stable and 
visually interpretable gradient map. SmoothGrad was 
used to generate detailed saliency maps for each input 
image, highlighting the pixels that were most influential in 
the model's decision. These saliency maps helped provide 
a clearer understanding of how the model differentiated 
between benign and malignant lesions. 
 

Fig 4.4.2 SmoothGrad Analysis 

 
 
Benefits: SmoothGrad produces clearer and more 
focused explanations compared to basic gradient-based 
methods. It reduces visual noise in the explanations, 
making it easier for clinicians to interpret which parts of 
a lesion image were influential in the model’s decision. 
 
 
 
4.4.3 Results of Applying XAI Techniques to the 
Models 
 By implementing Grad-CAM and SmoothGrad on the 
InceptionV3, Xception, and EfficientNet models, several 
benefits were observed: 
Highlighting Critical Regions: Both Grad-CAM and 
SmoothGrad effectively identified significant areas within 
skin lesion images that influenced model decisions. These 
insights validated that the models were focusing on 
relevant features, such as lesion color changes, irregular 
shapes, and darker spots—key characteristics for 
dermatological assessment. 
Enhancing Model Transparency: The application of Grad-
CAM and SmoothGrad improved the transparency of each 
model, making it easier for healthcare professionals to 
trust and understand the AI's reasoning. Transparent 
models are more likely to be accepted in clinical settings, 
as they allow clinicians to interpret and validate the AI’s 
focus and rationale.  
Validating Model Behavior: Both techniques allowed for 
the validation of model behavior by ensuring that the AI 
focused on medically relevant parts of the lesions. For 
example, the heatmaps and saliency maps confirmed that 
the AI 30 models paid attention to critical aspects such as 
asymmetry, color variation, and border irregularities, 
which are commonly used criteria for identifying 
malignant skin lesions in dermatology. 

5.VISUALIZATIONS 
 
5.1 Grad-CAM Visualizations:  
Gradient-weighted Class Activation Mapping (Grad-CAM) 
is an XAI technique used to create heatmaps that indicate 
the regions of an image that contributed most to the 
model's prediction. The primary goal of Grad-CAM is to 
highlight key areas that the model considers important 
when classifying an image as either malignant or benign. 
 
Key Observations in Malignant Cases: In images 
classified as malignant, Grad-CAM heatmaps often 
highlighted irregular edges and darker spots within the 
lesion. These are crucial features used by dermatologists 
to identify potential skin cancer. Irregular Borders: Grad-
CAM frequently showed high activation around uneven or 
asymmetrical borders of lesions. This is consistent with 
medical knowledge, as asymmetry is a common indicator 
of melanoma. Dark Patches: The technique also focused 
on dark or pigmented areas within the lesion. Malignant 
lesions often display uneven color distribution, with  
darker areas indicating potential malignancy due to 
irregular growth patterns. 

Fig 5.1 Malignant - GRAD-CAM Visualization 
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Fig 5.2 Benign - GRAD-CAM Visualization 

 

5.2 SmoothGrad Visualizations  
SmoothGrad is another XAI technique designed to 
improve gradient-based visual explanations by averaging 
over multiple noisy versions of the input image. This 
method reduces noise in the visualization, resulting in 
sharper, more focused explanations that highlight the 
most influential features at a finer level.  
 
Key Observations in Malignant Cases: In malignant 
cases, SmoothGrad visualizations often showed emphasis 
on fine-grained features such as subtle texture changes 
and minor color variations within the lesion. Texture 
Patterns: Malignant lesions tend to have irregular 
textures, which can be indicative of uneven cell growth. 
SmoothGrad effectively highlights these textural 
differences by focusing on areas with high gradient 
influence. Color Variations: Small variations in color, such 
as the presence of tiny dark spots or uneven shading, are 
critical for distinguishing between benign and malignant 
lesions. SmoothGrad’s pixel-level sensitivity helps bring 
out these subtle details, making it a valuable tool for 
identifying early signs of malignancy. 

 
Fig 5.3 Malignant – SmoothGrad Visualization 

 

Fig 5.4 Benign – SmoothGrad Visualization 

 

6.MATHEMATICAL EQUATIONS: 
 
6.1 Grad-CAM: 
 

 
 

 
 
Intuition and Explanation:  
Gradients: The partial derivatives measure how much the 
class score changes with respect to the activations at each 
position in the feature map. Larger values indicate that the 
model relies more heavily on that particular region of the 
feature map to make its prediction for class c.  
Weighted Sum: The double sum is used to aggregate the 
gradients over all spatial positions in the feature map. 
This aggregation ensures that regions of the image 
corresponding to larger gradients have a greater influence 
on the final class activation map.  
 
Normalization: The factor Z normalizes the computed 
weights, ensuring that the overall importance across 
feature maps is scaled properly. This normalization 
ensures the sum of the weights doesn’t grow 
disproportionately with the size of the feature map. 
 
 
 
 
 
 
 
6.2 SmoothGrad: 
 

 
 
Intuition and Explanation:  
Noise Addition: By adding Gaussian noise to the input 
image, we create multiple noisy versions of the image. 

This helps to capture the generalizable patterns in the 
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gradients, filtering out any high-frequency noise or 
artifacts that might distort the gradient signal.  
Gradient Averaging: By averaging the gradients over 
multiple noisy samples, we get a more stable and reliable 
estimate of the gradients. This reduces the sensitivity of 
the gradient to small changes in the input image, helping 
to focus on the most important features and reducing the 
impact of random noise. 
Standard Deviation σ: The standard deviation σ\sigmaσ 
controls the amount of noise added to the input image. A 
higher σ\sigmaσ results in more noise, making the 
gradients smoother but potentially less sensitive to fine 
details. A lower σ makes the gradients more precise but 
might not smooth out noise as effectively. 
 

7.SYSTEM DESIGN: 
 
This system diagram illustrates the end-to-end process 
for developing a deep learning model. It begins with 
collecting raw data, which is then preprocessed to ensure 
quality and consistency. Once the data is ready, a deep 
learning model is designed, where choices about the 
model's structure and functions are made. The next step 
is training the model on the data, fine-tuning parameters, 
and validating its performance to make sure it learns 
effectively. After training, the model is ready to make  
 
predictions or classify new inputs. To make the model’s 
decisions more understandable, explainability techniques 
are used to visualize and  interpret its outputs. Finally, the 
model’s performance is evaluated using metrics like 
accuracy and precision to determine how well it performs 
in real-world scenarios. This cycle helps refine the model 
and ensure it meets the desired goals. 
  
 
 
 
 
 
 
 
 

 
 

                             Fig: 7.1 system design 
 
8.EVALUATION METRICS COMPARISON 
 
8.1 Metrics Table 
 

 
Table : 10.1 : Metrics table 

 
8.2 Analysis  
 
8.2.1 Xception Model:  
With its high precision and recall, Xception achieves 
strong overall accuracy, making it ideal for clinical 
scenarios that demand reliable, balanced predictions. 
8.2.2 EfficientNet:  
The 128x128 version is computationally lighter, offering 
good malignant recall. However, its performance on 
benign lesions is slightly lower, which may result in 
missed benign cases.  
8.2.3 InceptionV3: This model provides reliable 
performance across metrics, making it versatile but not 
necessarily the top choice for highly specific classification 
needs. 
 
8.3 Importance of Evaluation Metrics in Medical AI 
 
In a medical context, precision, recall, and F1-score are 
essential metrics that define the reliability and safety of AI 
systems:  
 
8.3.1 Precision: Indicates the proportion of positive 
identifications (e.g., malignant cases) that were actually 
correct. High precision reduces false positives, which can 
prevent unnecessary patient anxiety and further testing. 
 
8.3.2 Recall: Measures how well the model identifies true 
positive cases (e.g., malignant lesions correctly detected). 
High recall is vital to minimize false negatives, which 
could result in missed diagnoses.  
 
8.3.3 F1-Score: Balances precision and recall, providing a 
single metric for understanding overall model 
performance. This is especially useful in clinical settings 
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where both false positives and false negatives have 
serious implications. 
 

9.RESULTS AND DISCUSSION 
 
9.1 Dataset Overview  
In this project, we used a subset of the ISIC (International 
Skin Imaging Collaboration) Archive, a widely recognized 
dataset in the field of dermatology. The ISIC Archive is 
known for its extensive collection of dermoscopic images, 
aimed at improving skin cancer diagnosis using AI. For 
our study, we focused specifically on images labeled as 
either malignant (cancerous) or benign (non-cancerous). 
This binary classification is crucial for distinguishing 
potentially dangerous skin lesions from harmless ones, 
which is a key step in early skin cancer detection.  
 
9.2 Focus on Binary Classification  
The main goal of our project was to develop an AI model 
that can accurately classify skin lesions into two 
categories: malignant and benign. This binary 
classification task is particularly important in clinical 
settings because early and accurate identification of 
malignant lesions can lead to timely treatment and better 
patient outcomes. Benign lesions, on the other hand, are 
non-cancerous and usually do not require aggressive 
treatment. Misclassifying a malignant lesion as benign 
could delay necessary medical intervention, making this 
task a critical application of AI in healthcare. 
 
9.3 Data Preparation  
Given that our dataset only contains images with labels 
(malignant or benign), our preprocessing focused on 
standardizing these images for training the deep learning 
models.  
Key steps included:  
Image Resizing: Since different deep learning models 
require specific input sizes, we resized the images 
accordingly. For example: EfficientNet used input sizes of  
 
128x128 pixels. EfficientNetB0 used 224x224 pixels.  
InceptionV3 and Xception used 299x299 pixels. This 
resizing ensures that all input images are compatible with  
the model architecture, allowing for consistent feature 
extraction.  
Data Augmentation: To increase the variety of training 
data and improve the model’s ability to generalize, we 
applied augmentation techniques such as rotation,  
 
flipping, and zooming. These transformations help the 
model learn to recognize skin lesions from different 
perspectives and under various conditions, making it 
more robust when tested on new, unseen images. 
 
9.4 Handling Class Imbalance  
One of the challenges we encountered was the imbalance 
in our dataset, as benign cases were more prevalent than 
malignant ones. In medical datasets, this is common 
because most skin lesions are non-cancerous. However, 

this imbalance can lead the model to become biased, 
favoring benign predictions over malignant ones, which 
could reduce the sensitivity for detecting actual cancer 
cases. To address this, we implemented techniques like: 
 
Oversampling: We artificially increased the number of 
malignant cases by duplicating existing malignant images, 
helping the model learn better from this minority class.  
 
Class Weight Adjustment: During training, we adjusted 
the class weights to place more emphasis on malignant 
cases. This penalizes the model more when it makes 
errors in classifying malignant lesions, thereby improving 
its sensitivity to these critical cases. 
 

10.CONCLUSION 
 
The ultimate aim of this project was to create an AI-
powered diagnostic tool that could assist dermatologists 
in quickly and accurately identifying malignant skin 
lesions. By providing a reliable second opinion, our model 
can help reduce the time taken for diagnosis and minimize 
the risk of missing a potentially cancerous lesion. This 
system can be especially beneficial in busy clinical 
environments where quick decision-making is essential. 
By focusing on this binary classification task, our project 
aims to contribute towards making AI tools an integral 
part of dermatological practice, providing enhanced 
diagnostic support and helping to improve patient 
outcomes through early detection. 
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